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astic astic Deforma n

in _Beams under Dynamic Loading1

by J. A. Seiler2

Abstract:s This paper gives an elastic-plastic analysis of a
simply supported uniform beam subjected to a uniform pressure
applied as a pulse of rectangular shape, Plastic flow is taken
account of only at a plastic hinge at the mid-section of the
beam, The resulting permanent deformations are compared with
those predicted by a "rigid-plastic" type of analysis in which
elastic deformations are neglected, Because of the failure of
the elastic-plastic analysis to consider the plastic deformations
at cross-sections other than the middle section, the two solu-
tions do not agree even at large load values, The elastic-
plastic results are in better agreement with an incorrect rigid~
plastic treatment in which plastic hinge action is assumed to
occur only at the mid-point,

I. Introduction
There has recently been considerable study of the plastic

deformations of beams and frames under dynamic loading, on the

basis of the "plastic-rigid" hypothesis [1, 2, 3, 4, 5, 6]3.

I, The results in this paper were obtained in the course of
research conducted under Contract N7onr-35801 between Brown
University and the Office of Naval Research.

2, Research Assistant, Division of Applied Mathematics, Brown
University.

3. Numbers in square brackets refer to the bibliography at the
end of the paper,
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g . According to this hypothesis there is no curvature change at a

; given section of a b=am unless a bending moment of a certain
magnitude is maintained at that section. Where this moment
(called the limit or fully plastic moment) i1s maintained, "plas-
tic hinge" action can occur as long as the bending moment main-
tains its limit value., The neglect of elastic deformations is
permissible when the loads are of such a magnitude as to produce
plastic strains large in comparison with any possible elastic
strains,

In order to determine the range of loading in which the
neglect of elastic deformations is permissible, it is desirable
to make analytical studies in which elastic as well as plastic
strains are considered, One study of this type has been carried
out by Bleich and Salvadori [7] for a problem of impulsive
motion (specified initial velocity) of a uniform beam with free
ends, The present paper treats the elastic and plastic motions
of a simply supported beam subjected to a specified dynamic
load, namely a uniformly distributed pressure applied as a
pulse of rectangular shape. The analysis used here is essen-
tially the same as that of [7]. The initial elastic motion 1s
represented as a series of eigenfunctions., The initial wholly
elastic phase terminates when the bending moment at any section

\ reaches the limit moment magnitude, Thereafter at such a sec-
tion the moment is held constant at the limit moment magnitude
. and the previous condition of slope continuity is relaxed, Thus
"plastic hinge" action occurs at such a section as long as the

\ ’ relative angular velocities across the section are in the same
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sense as the moment at the hinge, The subsequent elastic motions
of the segments separated by the hinge section are then repre-
sented by a new series of eigenfunctions corresponding to the new
boundary conditions, with amplitudes chosen so that the elastic-
plastic solution matches the wholly elastic one,

The plastic-rigid solutions of beam problems show that
there are in general not only plastic hinges at fixed cross-
sections, but also either travelling plastic hinges or finite
plastic regions of changing size., Although the solution of
elastic~plastic problems by synthesizing eigenfunctions can
clearly be carried out when one or more fixed plastic hinges are
present, this method is not applicable when moving hinges or
elastic-plastic interfaces occur, Thus in [ 7] it is assumed
in the numerical example treated that plastic hinge action occurs
only at the center of the beam, This is certainly correct for
low enough initial velocities and lncorrect for very high ini-
tial velocities, Unfortunately, since the plastic-rigid type
of analysls requires the initial velocities to be high in order
for the analysis to be appropriate, it is evident that the
validity of the plastic-rigid analysis cannot be assessed by
comparison with the results of a "single-hinge" type of elastic-
plastic analysis. 1In [7] Bleich and Salvadori compared the
deformations of their elastic-plastic solution with those of a
fictitious rigld-plastic solution in which a plastic hinge was
assumed to occur only at the center, the two halves of the beam
moving as rigid bars, Their elastic-plastic results were found

to coincide at high initial velocities with those of this
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"single-hinge" rigid-plastic solution, This 1s clearly to be
expected since both solutions would be correct for a bar suffi-
clently strengthencd at sections other than the middle section.,

The simplest case to which the above method.applies is
the one degree of freedom system, illustrated by a mass on a
spring. This problem has been thoroughly worked out by Brooks
and Newmark [8], and will be described here to illustrate both
the general method of elastic-plastic analysis and the expected
relation betweéh the results of this analysis and those of the
simpler rigid-pldbéic analysis, .

Consider the system shown in Fig. 1, The spring force-
displacement curve, according to the above method, is taken as
shown in Fig., 2, and for simplicity, we consider a rectidngular
pulse shape as shown in Fig. 3.

If x is the displacement of the mass, p is the load
intensity, ané k is the spring constant, then the equation of
motion of the mass m, as the load is first applied. is

mX = p - kx ° (1)
subject to . .
x(0) = x(0) = 0, (2)

‘where the dot denotes time differentiation., The system (1),
(2) has the solution . |

x=§(1-cos\/£t). (3)
m .

The system reaches its maximum elastic response when .

X = Xyy the yield. displacement,which occurs at time t = ty

— e
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given by

B
ct
¢<

= arc-cos (E_ﬁ;L), (%)

where we define the dimensionless parameter p to be

b= EE; .
At time t = ty we have
X = Xy
x=2 [k Jﬁgu—:il, (5)
K Vm m

which are used as initial conditions for the new equation of

motion of the mass in the plastic range, i.e.,

=p - kxy. (6)

Equation (6), together with initial conditions (5) has solution

p - kx [
m m y y
At time T the load ends, at which time the velocity and dis-

placement of the mass are:
p - hxy 2 .p f Vou-1,
e L B s TR

. p'kx ~
y P % Vou .1
(T=-ty) +p --E-—--p .

The equation of motion of the mass now becomes

. mx = - kxy, (9)

subject to (8) as initial conditions. The system (8), (9) has
i solution

b e . s+ r— S e e \
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O - TOPTERY ¥ @]u-ﬂ
P - kx 2, p \2p -1
+_,z;r..‘£ (q;-ty)+k..lEp__—(1-ty)+Ho

(10)
[
To find the maximum response of the system, we set x = 0
and solve for t, insert this back in (10) and obtain an expres-

sion for the final maximum response Xpt

2
kx T -t T -t
= Y &(}l*l) Y42 -
X ==L TR e
+k—’“g(-*£-—12 1. (11)
T

We now define a dimensionless pulse time { = Vik/m v,
in terms of which (11) gives the dimensionless maximum displace=-

ment XF as

Xp)g.p.

_u&l_TL).[l - l arc-cos (p.____- l)]
kxyt

&AKJZ:::: (1 - % arc-cos (E—ﬁ—l)] + gﬂ;igl (12)

where the arc-cos function is restricted, of course, to its
principle value,

It is evident that for low enough load intensity and/or
short enough pulse time, we might not have ylelding, or that
yilelding might occur after the load is removed. The analysis in
this case is much the same and will not be presented here. The

resulting dimensionless deformation is

(Xp)g p. = (k%f'f) =& bPa - cos ) + 3. (13)
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¢ here is restricted to have a small enough value so that yleld-
ing will not occur during the force pulse,

Consider now the plastic-rigid problem, i.e., with a
spring-force displacement curve as shown in Fig, 4%, 1In this
case a similar analysis yields the following expression for the

dimensionless maximum displacement:
(Xp)p.p. = 28 (b = 1), (1)

Figure 5 shows curves of (XF)E.P. vs load intensity p
for various ¢, and also the curve of (Xp)gp,p, VSe ke

The criterion for the validity of a plastic-rigid analy-
sis of this problem, following that put forth in [1], 1s that
we must have 2
kx, (Xp)p,p, > 1 kx s (15)
Relation (15) states that the plastic work (i.e., yleld force
multiplied by the plastic deformation) must be much greater than
the maximum elastic strain energy that can be stored in the

spring, Relation (15) can also be written in the following form:

Wp o
WF::C B - 1) > 1, (16)

where wP and WE are, respectively, the plastic work and the
maximum elastic strain energy.

It is seen from Figs, 6(a), (b), (c) that the validity
of the rigid-plastic analysis of this problem cannot be ascer-
tained from the magnitude of the energy ratio Wp/W; alone. The
validity must also depend upon an inequality being satisfied by



A11-109 8

one of the parameters py ¥ In other terms, one cannot make a
positive statement that WP/WE being greater than some number
implies that the error involved in the rigid-plastic hypothesis
is less than some preassigned value., The statement that can be
made 1s that given a fixed ratio of pulse time to period, a
value of WP/WE can be found so that the error 1s less than any
preassigned amount.,

Figure (6) shows plots of percent error vs, p for various
Wp/Wp values., Figure 6 may be interpreted as follows. If, say,
Wp/Wp = 10y and p = 13, then the error involved in the plastic-
rigid assumption will always be less than 15% provided the pulse
time 1is larger than the value obtained from (16) namely
¢ = +253, which implies a pulse time of .O40 periods.

II. astic Response of Beams

We now proceed to the discussion of a simply supported
beam of mass m per unit length, and length {4 as indicated in
Fige 7, acted on by a uniform load of intensity p per unit
length, We again consider only the rectangular force pulse
shape as in Fig, 3. The equation for the displacement y (x,t)

of the beam is, (neglecting the effects of shear and rotary

inertia)
(EIyyy)yx * ™ey = P o (17)

The initial and boundary conditions are

N

y(x,0) = y.(x,0) =0
¥(0yt) = yux(Oyt) = 0 > (18)

y(4t) = g (ht) = 0,
\

S yFe
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The eigenfunctions of the homogeneous system are

P, (x) = sin E%E ’

and we assume a solution in the form
v( ) = (x)q..(t)
Xyt 2 9,(x)q.(t
' -1 D n )

where each generalized coordinate 4, (t) must satisfy the

Lagrangian equations

a% ('a-?-) +'al- = Qn’

aqn aqn
and where L
|
i 2
=
T=3 | (Yt) dax,

d,

By ax,
Jo
1 ’ I
|
|

<
1]

g}

O = | P(x,t)p, (x)dx = p

: Jo

sin Q‘? dx.

(19)

(20)

(212

(22)

(23)

Upon substitution of (21), (22), (23) into (20) we find

4p 2
q,(t) = —~ (1 - cos \°t)
n nmm\ !
where

n=1, 3,50.0

Yy b 2

A EEzK k™ = .
kLt £r

Hence our solution for y(x,t) becomes

L

(2k)

@ 22
v(x,t) =kn 2 j stn B2 (1 - cos nkzg. t).  (25)

®PEI n=1,3
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This solution is valid until the bending moment reaches
its capacity value M, at the center of the beam, In order to
find the time t, at which this occurs we set the bending moment
M(xyty) = - EIyxx(x,to) equal to My at x =4/2, We obtain

ipp? 0 (=1) 2 nmt,
= - o 2

We now define dimensionless load and time parameters p

and n to be

2 2
= P2 = &t
B = My ! 1 _Q‘m .
Then (26) becomes
3 @ 25;
3T (L—p ) n=;]‘:,3 L-)__n3 cos nn_ (27)

vhere 1 = 2to/k£?.

The right-hand side of Eq. (27) 1s plotted vs, oo and
for each p value the intersection of left- and right-hand sides
gives the time for the moment to reach M, at x = {/2, Figure 8
shows a plot of N, versus the load parameter po At time n = U™

the velocity and displacement of all points of the beam are

given bys
y(x,t,) = hp&u ;.'.D o 2
1 %o ;31'3_1 n=1,3 ;15 sin —f‘ (1 = cos n"1,) (28)
2 @
¥, (xyt5) = it 3 -% sin &8 g4p n2q , (29)
t 3 =1,3 2 °
T EIk ' n
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Now a new problem must be solved; we have a beam of
length 4/2, simply supported at one end, with zero shear and
constant moment M, at the other end, and with the above displace-
ment and velocity as initial conditions (Fige 9)e

This problem as it stands does not lend itself to solu-
tion by a sum of eigenfunctions, since the boundary conditions
are non-homogeneous, However, the problem can be separated into

two parts, We seek a function y(x,t'), where t! = t - t,, such

+ k y [ W .
Y xoexx t1t! BT
y(0,t1) = y_(0,t1) =0 (30)
4 )
VexGrt') = T (Fytt) = 0

V
to which we add a particular solution satisfying the non-homo-
geneous boundary conditions of zero shear and constant moment

at the free end of the beam, The desired solution 1is

(x,61) = (A + Btt)x + 2 ¢ (x)[A st Byt By
X = + X + sin
Y X,y n=1 cpn X An k?_ + Bn cos -k?-
2
hpt! Mot 4
+ ] + [ kX
5 1% B BT
EIbn(sinh - + sin = 240
S+ 2w 2 45
- ks 8 (gl - <)) (31)
L8 k & 204

where A, By A, Bn are constants to be determined from the

i : initial conditions, qh(x) are the elgenfunctions of the half

ho e s 6 wmewes e - P
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beam, and b, are the eigen valuess
b b _x
= n e I . ¢
q;n(x) sin % sinh T + sinh - sin T

b b
tanh - = tan -, or

bn:‘\j -%- (’+n + l)o

Proceeding in the usual way for determining the coeffi-

clents, we find:

B PN -1 2
5 n=1,3 S-—-Z-g—- sin n M

n

16 vZ pt*(-1)" cosh -% o (-1) " sin maq
*n © 5 b e e
1t3EIbn(sinh2 .?Il - sin® _51:1.) m=1,3 m(mn’ - b ")
- b nsl
16 /3 pJLL’lon(-l)n cosh B o (1) (1= cos mzno)
B = z
n b

b -
113EI(siI.nh2 11:1_ - Sin2 -5’-) m=1,3 m3(m)+1tl* - bnh)

2 r bn 1)
. ‘+Moa?, | sin - cosh ,é.’l(p, + 8)
b i
EIbn3 (sinh® %n - sin® ) L 4
(sinh ’n 1 ®y

-'. pis - = sin T) _ lrp,&u
2 b y
L EIbng(sinh .29. +sin%})
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This solution applies until
t==«x

at which time the load is removed. For convenience we define

a dimensionless quantity ¢ by ¢ = n%r/k&g; physically { is 2=
times the ratio of pulse duration to fundamental period. Then
at time n = { the velocity and displacement of all points of the

beam are given by

2 2 2
K (C - 1) k(¢ - n.) kt (¢ - n))
¥ (x, » Lo . (A +B : 5 To ) x + Y(x, 5 To
T T i
2 2
@ b "({ =-n1.) b (L - 1)
+ n§l¢n(x)[An sin & 5 o + B, cos I I+n2
+ L}p%b b ]o (32)
EIbns(sinh 7? + sin 1?
2 2
k2 (¢ = ny) . kL (¢ - 1)
ytl(x, <2 L ) = Bx + P(x, e To
= s
2 2, 2
(x)b b (¢ - q) b S(C - n.)
+ ;? 5 n [A, cos o » Yo - B, sin n 5 T y (33)
n=l g g n 9)

where Y(x,t!') is the particular soiution of (30).

The system (30) must now be solved with p = 0, subject
to the initial conditions (32) and (33)e With p = 0 (30) has
the solution

\ y(x t") = (Al + Bit")x 3 ( )[ ' s t ' b 2t" ]
’ + x n
n=1 Pn An in - + B. cos

M_42

5 _ 12 Y 3
- (25‘25 kéf,; Yk
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'
where t" = t - v, The constants A!', B!, A;, and B, must be
determined so as to satisfy initial conditions (32) and (33).

Proceeding as before we find

3 -
AV = 9;"‘?’ [ g) =3 Ezl (1 - cos nzqo)
n'EI D=1,3 n
o 2 3(p-8) (Lon.)°
- > =1 2 Mo B= -qo 39
* (€= 1) = S_n%.__ sin n°n ) + =2[ - + 5]
96p4, ® (-1) sin n2qo 1t3(p - 8)( - 1)
Bt = -g--—- [ p) 5 - + 5 ]
n’EIx Dn=1,3 n 3ep
2 2
b “({ - 1.) b -
AI'n=Amcos n n2qo - B sin m(Cqu)
7
2 2
b, (= 1) b @ -1) b
BIL:Amsinm §° + B, cos —= qu + hptb —-
n n EIbg(sinhnég‘--i-sin o)
b b
m m
, Hp&u [sinh-?-:in-?
b b 2
EIbm3(sinh2 -gm- - sin® 3@) b
b
- Q: sin -é-n. cosh ;’.‘. IR (34)

Now plastic deformation at the hinge will cease when the
relative angular velocities of the two half beams at x =4/2

become equal, i.e., when 5%6%‘ = 0, However, after taking
x=L/2

one x and one time derivative of the solution the eigenfunction
series no longer converges. To avold this difficulty, the slope

yx(uz,t) is plotted as a function of time and the maximum point

LT
-
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of the curve is determined by inspection.

These times are used to calculate the final mid-point
deflection, which is plotted as a functlon of the load intensity
p for several pulse times in Fig. 10, The finai central angle 1s
plotted in the same manner in Fig, 11, The results from a plas-
tic-rigid analysis of the beam [2] are included for comparison.

For small enough load intensity values and/or short
enough pulse times, the bending mcment may reach M, after the
load has been removed, or not at all., The analysis in this case
is similar to that above and will not be presented here, The
results are included with those in Figs. (10, 11).

III, Discussion:
The criterion developed in [1] for the validity of a
plastic-rigid analysis for this problem takes the form

2L |

2MOOO >> éﬁ 9 (35:
where 6, is the final central angle of the beam, Inequality (39)
may also be written in the following forms

h(zf(p) _ Yp

n E
where f(it) is the dimensionless parameter involving the final

> 1, (36)

central angle shown in Fig. (11).

Figure (12) shows a plot of the differences (expressed
as percent) between mid-point deflections of the present elastic-
plastic solution and those given by the single-hinge and correct
rigid-plastic solutions vs, Wp/Wg, for values of ©/T equal to

N
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1/2 and 2, T is the fundamental period of vibration of the beam.
It is seen that for Wp/W; becoming large, the single-
hinge rigid-plastic solution differs very much from the correct
rigid-plastic results and is presumably wrong since violations
of the plasticity condition would occur at sections other than
the mid-section. The approach to agreement as WP/WE becomes
large of the present elastic-plastic solution with the single-
hinge rigid-plastic solution is to be expected on the basis of
the energy hypothesls for the validity of a rigid-plastic analy-
siss both solutions are correct (for very large WP/WE) for a
beam strengthened so that plastic flow takes place only at the

mid-section where the bending moment is equal to Mye The agree-

ment at large WP/WE values between the single-hinge rigid-plastic

solution and the present elastic-plastic solution can thus be
taken as an indication that the elastic-plastic results are
incorrect in the range of large Wp/Wp. However, the elastic-
plastic analysis gives accurate results for fairly low load
intensities, where the deformation is mainly elastic and plastic

deformation occurs only at a single hinge at the center of the

beam,
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